Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 1.469
Filter
1.
Int J Mol Sci ; 24(11)2023 May 30.
Article in English | MEDLINE | ID: covidwho-20243981

ABSTRACT

SARS-CoV-2 infects cells via its spike (S) protein binding to its surface receptor angiotensin-converting enzyme 2 (ACE2) and results in the production of multiple proinflammatory cytokines, especially in the lungs, leading to what is known as COVID-19. However, the cell source and the mechanism of secretion of such cytokines have not been adequately characterized. In this study, we used human cultured mast cells that are plentiful in the lungs and showed that recombinant SARS-CoV-2 full-length S protein (1-10 ng/mL), but not its receptor-binding domain (RBD), stimulates the secretion of the proinflammatory cytokine interleukin-1ß (IL-1ß) as well as the proteolytic enzymes chymase and tryptase. The secretion of IL-1ß, chymase, and tryptase is augmented by the co-administration of interleukin-33 (IL-33) (30 ng/mL). This effect is mediated via toll-like receptor 4 (TLR4) for IL-1ß and via ACE2 for chymase and tryptase. These results provide evidence that the SARS-CoV-2 S protein contributes to inflammation by stimulating mast cells through different receptors and could lead to new targeted treatment approaches.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Angiotensin-Converting Enzyme 2/metabolism , Chymases/metabolism , Cytokines/metabolism , Interleukin-1beta/metabolism , Interleukin-33/metabolism , Mast Cells/metabolism , Protein Binding , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Tryptases/metabolism
2.
ACS Appl Mater Interfaces ; 15(22): 26340-26348, 2023 Jun 07.
Article in English | MEDLINE | ID: covidwho-20241598

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection relies on its spike protein binding to angiotensin-converting enzyme 2 (ACE2) on host cells to initiate cellular entry. Blocking the interactions between the spike protein and ACE2 offers promising therapeutic opportunities to prevent infection. We report here on peptide amphiphile supramolecular nanofibers that display a sequence from ACE2 in order to promote interactions with the SARS-CoV-2 spike receptor binding domain. We demonstrate that displaying this sequence on the surface of supramolecular assemblies preserves its α-helical conformation and blocks the entry of a pseudovirus and its two variants into human host cells. We also found that the chemical stability of the bioactive structures was enhanced in the supramolecular environment relative to the unassembled peptide molecules. These findings reveal unique advantages of supramolecular peptide therapies to prevent viral infections and more broadly for other targets as well.


Subject(s)
COVID-19 , Nanofibers , Humans , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Protein Binding , Peptides/pharmacology , Peptides/metabolism
3.
Int J Mol Sci ; 24(11)2023 May 24.
Article in English | MEDLINE | ID: covidwho-20241182

ABSTRACT

The spike protein (S) of SARS-CoV-2 is able to bind to the human angiotensin-converting enzyme 2 (ACE2) receptor with a much higher affinity compared to other coronaviruses. The binding interface between the ACE2 receptor and the spike protein plays a critical role in the entry mechanism of the SARS-CoV-2 virus. There are specific amino acids involved in the interaction between the S protein and the ACE2 receptor. This specificity is critical for the virus to establish a systemic infection and cause COVID-19 disease. In the ACE2 receptor, the largest number of amino acids playing a crucial role in the mechanism of interaction and recognition with the S protein is located in the C-terminal part, which represents the main binding region between ACE2 and S. This fragment is abundant in coordination residues such as aspartates, glutamates, and histidine that could be targeted by metal ions. Zn2+ ions bind to the ACE2 receptor in its catalytic site and modulate its activity, but it could also contribute to the structural stability of the entire protein. The ability of the human ACE2 receptor to coordinate metal ions, such as Zn2+, in the same region where it binds to the S protein could have a crucial impact on the mechanism of recognition and interaction of ACE2-S, with consequences on their binding affinity that deserve to be investigated. To test this possibility, this study aims to characterize the coordination ability of Zn2+, and also Cu2+ for comparison, with selected peptide models of the ACE2 binding interface using spectroscopic and potentiometric techniques.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites , Protein Binding , Amino Acids/metabolism , Zinc
4.
Front Immunol ; 14: 1123155, 2023.
Article in English | MEDLINE | ID: covidwho-20238534

ABSTRACT

Introduction: Natural killer (NK) cells plays a pivotal role in the control of viral infections, and their function depend on the balance between their activating and inhibitory receptors. The immune dysregulation observed in COVID-19 patients was previously associated with downregulation of NK cell numbers and function, yet the mechanism of inhibition of NK cell functions and the interplay between infected cells and NK cells remain largely unknown. Methods: In this study we show that SARS-CoV-2 infection of airway epithelial cells can directly influence NK cell phenotype and functions in the infection microenvironment. NK cells were co-cultured with SARS-CoV-2 infected epithelial cells, in a direct contact with A549ACE2/TMPRSS2 cell line or in a microenvironment of the infection in a 3D ex vivo human airway epithelium (HAE) model and NK cell surface expression of a set of most important receptors (CD16, NKG2D, NKp46, DNAM-1, NKG2C, CD161, NKG2A, TIM-3, TIGIT, and PD-1) was analyzed. Results: We observed a selective, in both utilized experimental models, significant downregulation the proportion of CD161 (NKR-P1A or KLRB1) expressing NK cells, and its expression level, which was followed by a significant impairment of NK cells cytotoxicity level against K562 cells. What is more, we confirmed that SARS-CoV-2 infection upregulates the expression of the ligand for CD161 receptor, lectin-like transcript 1 (LLT1, CLEC2D or OCIL), on infected epithelial cells. LLT1 protein can be also detected not only in supernatants of SARS-CoV-2 infected A549ACE2/TMPRSS2 cells and HAE basolateral medium, but also in serum of COVID-19 patients. Finally, we proved that soluble LLT1 protein treatment of NK cells significantly reduces i) the proportion of CD161+ NK cells, ii) the ability of NK cells to control SARS-CoV-2 infection in A549ACE2/TMPRSS2 cells and iii) the production of granzyme B by NK cells and their cytotoxicity capacity, yet not degranulation level. Conclusion: We propose a novel mechanism of SARS-CoV-2 inhibition of NK cell functions via activation of the LLT1-CD161 axis.


Subject(s)
COVID-19 , Receptors, Cell Surface , Humans , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Killer Cells, Natural , Receptors, Cell Surface/metabolism , SARS-CoV-2/metabolism
5.
Viruses ; 15(5)2023 04 30.
Article in English | MEDLINE | ID: covidwho-20234187

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), believed to have originated from a bat species, can infect a wide range of non-human hosts. Bats are known to harbor hundreds of coronaviruses capable of spillover into human populations. Recent studies have shown a significant variation in the susceptibility among bat species to SARS-CoV-2 infection. We show that little brown bats (LBB) express angiotensin-converting enzyme 2 receptor and the transmembrane serine protease 2, which are accessible to and support SARS-CoV-2 binding. All-atom molecular dynamics (MD) simulations revealed that LBB ACE2 formed strong electrostatic interactions with the RBD similar to human and cat ACE2 proteins. In summary, LBBs, a widely distributed North American bat species, could be at risk of SARS-CoV-2 infection and potentially serve as a natural reservoir. Finally, our framework, combining in vitro and in silico methods, is a useful tool to assess the SARS-CoV-2 susceptibility of bats and other animal species.


Subject(s)
COVID-19 , Chiroptera , Animals , Humans , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Spike Glycoprotein, Coronavirus/metabolism
6.
J Transl Med ; 21(1): 358, 2023 05 31.
Article in English | MEDLINE | ID: covidwho-20234027

ABSTRACT

BACKGROUND: The distribution of ACE2 and accessory proteases (ANAD17 and CTSL) in cardiovascular tissue and the host cell receptor binding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are crucial to understanding the virus's cell invasion, which may play a significant role in determining the viral tropism and its clinical manifestations. METHODS: We conducted a comprehensive analysis of the cell type-specific expression of ACE2, ADAM17, and CTSL in myocardial tissue from 10 patients using RNA sequencing. Our study included a meta-analysis of 2 heart single-cell RNA-sequencing studies with a total of 90,024 cells from 250 heart samples of 10 individuals. We used co-expression analysis to locate specific cell types that SARS-CoV-2 may invade. RESULTS: Our results revealed cell-type specific associations between male gender and the expression levels of ACE2, ADAM17, and CTSL, including pericytes and fibroblasts. AGT, CALM3, PCSK5, NRP1, and LMAN were identified as potential accessory proteases that might facilitate viral invasion. Enrichment analysis highlighted the extracellular matrix interaction pathway, adherent plaque pathway, vascular smooth muscle contraction inflammatory response, and oxidative stress as potential immune pathways involved in viral infection, providing potential molecular targets for therapeutic intervention. We also found specific high expression of IFITM3 and AGT in pericytes and differences in the IFN-II signaling pathway and PAR signaling pathway in fibroblasts from different cardiovascular comorbidities. CONCLUSIONS: Our data indicated possible high-risk groups for COVID-19 and provided emerging avenues for future investigations of its pathogenesis. TRIAL REGISTRATION: (Not applicable).


Subject(s)
COVID-19 , Cardiovascular Diseases , Humans , Male , Adult , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/metabolism , Myocardium/metabolism , Single-Cell Analysis , Peptidyl-Dipeptidase A/genetics , Membrane Proteins/metabolism , RNA-Binding Proteins
8.
Int J Biol Macromol ; 244: 125182, 2023 Jul 31.
Article in English | MEDLINE | ID: covidwho-20230950

ABSTRACT

The COVID-19 pandemic, caused by SARS-CoV-2, has become a global public health crisis. The entry of SARS-CoV-2 into host cells is facilitated by the binding of its spike protein (S1-RBD) to the host receptor hACE2. Small molecule compounds targeting S1-RBD-hACE2 interaction could provide an alternative therapeutic strategy sensitive to viral mutations. In this study, we identified G7a as a hit compound that targets the S1-RBD-hACE2 interaction, using high-throughput screening in the SARS2-S pseudovirus model. To enhance the antiviral activity of G7a, we designed and synthesized a series of novel 7-azaindole derivatives that bind to the S1-RBD-hACE2 interface. Surprisingly, ASM-7 showed excellent antiviral activity and low cytotoxicity, as confirmed by pseudovirus and native virus assays. Molecular docking and molecular dynamics simulations revealed that ASM-7 could stably bind to the binding interface of S1-RBD-hACE2, forming strong non-covalent interactions with key residues. Furthermore, the binding of ASM-7 caused alterations in the structural dynamics of both S1-RBD and hACE2, resulting in a decrease in their binding affinity and ultimately impeding the viral invasion of host cells. Our findings demonstrate that ASM-7 is a promising lead compound for developing novel therapeutics against SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Molecular Docking Simulation , Spike Glycoprotein, Coronavirus/chemistry , Pandemics , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Protein Binding
9.
Mol Biol Rep ; 50(7): 5827-5836, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-20230640

ABSTRACT

BACKGROUND: Oxidative stress is thought to play a significant role in the pathogenesis and severity of COVID-19. Additionally, angiotensin converting enzyme 2 (ACE2) expression may predict the severity and clinical course of COVID-19. Accordingly, the aim of the present study was to evaluate the association of oxidative stress and ACE2 expression with the clinical severity in patients with COVID-19. METHODS AND RESULTS: The present study comprised 40 patients with COVID-19 and 40 matched healthy controls, recruited between September 2021 and March 2022. ACE 2 expression levels were measured using Hera plus SYBR Green qPCR kits with GAPDH used as an internal control. Serum melatonin (MLT) levels, serum malondialdehyde (MDA) levels, and total antioxidant capacity (TAC) were estimated using ELISA. The correlations between the levels of the studied markers and clinical indicators of disease severity were evaluated. Significantly, lower expression of ACE2 was observed in COVID-19 patients compared to controls. Patients with COVID-19 had lower serum levels of TAC and MLT but higher serum levels of MDA compared to normal controls. Serum MDA levels were correlated with diastolic blood pressure (DBP), Glasgow coma scale (GCS) scores, and serum potassium levels. Serum MLT levels were positively correlated with DBP, mean arterial pressure (MAP), respiratory rate, and serum potassium levels. TAC was correlated with GCS, mean platelet volume, and serum creatinine levels. Serum MLT levels were significantly lower in patients treated with remdesivir and inotropes. Receiver operating characteristic curve analysis demonstrates that all markers had utility in discriminating COVID-19 patients from healthy controls. CONCLUSIONS: Increased oxidative stress and increased ACE2 expression were correlated with disease severity and poor outcomes in hospitalized patients with COVID-19 in the present study. Melatonin supplementation may provide a utility as an adjuvant therapy in decreasing disease severity and death in COVID-19 patients.


Subject(s)
COVID-19 , Melatonin , Humans , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antioxidants/metabolism , COVID-19/genetics , Gene Expression , Oxidative Stress/genetics , Patient Acuity , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism
10.
Curr Opin Allergy Clin Immunol ; 21(1): 8-15, 2021 02 01.
Article in English | MEDLINE | ID: covidwho-2326975

ABSTRACT

PURPOSE OF REVIEW: Coronavirus disease 2019 (COVID-19), a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has quickly become a great public health hazard globally. Nasal epithelial cells are an important site for SARS-CoV-2 infection and replication. The purpose of this review is to summarize recent findings on the endotypes of chronic rhinosinusitis with nasal polyps (CRSwNP) and the potential impact of SARS-CoV-2 infection. RECENT FINDINGS: Endotypes of CRSwNP are characterized by type 1, type 2 and type 3 inflammation according to patterns of inflammatory cells and the cytokines expressed in nasal tissue. Nasal epithelial cells show the highest expression of angiotensin-converting enzyme 2 (ACE2), the receptor for attachment and entry of SARS-CoV-2 into host cells, among all investigated cells in the respiratory tree. SARS-CoV-2 infection likely leads to increased activation of T-helper-1 (Th1) cell responses. Recent studies further suggest that ACE2 may be upregulated by type 1 and downregulated by type 2 inflammatory cytokines in nasal epithelial cells. SUMMARY: Expression of ACE2 in nasal epithelial cells is influenced by inflammatory endotypes of CRSwNP. Type 1 inflammation in nasal tissue may increase the risk of SARS-CoV-2 infection by upregulating ACE2 expression. However, clinical association between CRSwNP and COVID-19 is still unclear.


Subject(s)
COVID-19/epidemiology , Nasal Polyps/epidemiology , Rhinitis/epidemiology , SARS-CoV-2/physiology , Sinusitis/epidemiology , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/immunology , COVID-19/virology , Comorbidity , Goblet Cells/immunology , Humans , Inflammation/immunology , Nasal Polyps/immunology , Rhinitis/immunology , Risk Factors , Sinusitis/immunology , Virus Internalization
11.
Int J Biol Sci ; 19(8): 2613-2629, 2023.
Article in English | MEDLINE | ID: covidwho-2322821

ABSTRACT

Aerobic glycolysis has pleiotropic roles in the pathogenesis of hepatocellular carcinoma (HCC). Emerging studies revealed key promoters of aerobic glycolysis, however, little is known about its negative regulators in HCC. In this study, an integrative analysis identifies a repertoire of differentially expressed genes (DNASE1L3, SLC22A1, ACE2, CES3, CCL14, GYS2, ADH4, and CFHR3) that are inversely associated with the glycolytic phenotype in HCC. ACE2, a member of the rennin-angiotensin system, is revealed to be downregulated in HCC and predicts a poor prognosis. ACE2 overexpression significantly inhibits the glycolytic flux as evidenced by reduced glucose uptake, lactate release, extracellular acidification rate, and the expression of glycolytic genes. Opposite results are noticed in loss-of-function studies. Mechanistically, ACE2 metabolizes Ang II to Ang-(1-7), which activates Mas receptor and leads to the phosphorylation of Src homology 2-containing inositol phosphatase 2 (SHP-2). SHP2 activation further blocks reactive oxygen species (ROS)-HIF1α signaling. Addition of Ang-(1-7) or the antioxidant N-acetylcysteine compromises in vivo additive tumor growth and aerobic glycolysis induced by ACE2 knockdown. Moreover, growth advantages afforded by ACE2 knockdown are largely glycolysis-dependent. In clinical settings, a close link between ACE2 expression and HIF1α or the phosphorated level of SHP2 is found. Overexpression of ACE2 significantly retards tumor growth in patient-derived xenograft model. Collectively, our findings suggest that ACE2 is a negative glycolytic regulator, and targeting the ACE2/Ang-(1-7)/Mas receptor/ROS/HIF1α axis may be a promising therapeutic strategy for HCC treatment.


Subject(s)
Angiotensin-Converting Enzyme 2 , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Angiotensin-Converting Enzyme 2/metabolism , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Liver Neoplasms/metabolism , Reactive Oxygen Species , Animals
12.
Nat Commun ; 14(1): 2527, 2023 05 03.
Article in English | MEDLINE | ID: covidwho-2314287

ABSTRACT

The Spike glycoprotein of SARS-CoV-2 mediates viral entry into the host cell via the interaction between its receptor binding domain (RBD) and human angiotensin-converting enzyme 2 (ACE2). Spike RBD has been reported to adopt two primary conformations, a closed conformation in which the binding site is shielded and unable to interact with ACE2, and an open conformation that is capable of binding ACE2. Many structural studies have probed the conformational space of the homotrimeric Spike from SARS-CoV-2. However, how sample buffer conditions used during structural determination influence the Spike conformation is currently unclear. Here, we systematically explored the impact of commonly used detergents on the conformational space of Spike. We show that in the presence of detergent, the Spike glycoprotein predominantly occupies a closed conformational state during cryo-EM structural determination. However, in the absence of detergent, such conformational compaction was neither observed by cryo-EM, nor by single-molecule FRET designed to visualize the movement of RBD in solution in real-time. Our results highlight the highly sensitive nature of the Spike conformational space to buffer composition during cryo-EM structural determination, and emphasize the importance of orthogonal biophysical approaches to validate the structural models obtained.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Detergents/pharmacology , Angiotensin-Converting Enzyme 2/metabolism , Cryoelectron Microscopy , Protein Binding , Glycoproteins/metabolism , Spike Glycoprotein, Coronavirus/metabolism
13.
ACS Infect Dis ; 9(6): 1180-1189, 2023 Jun 09.
Article in English | MEDLINE | ID: covidwho-2313578

ABSTRACT

SARS-CoV and SARS-CoV-2 cell entry begins when spike glycoprotein (S) docks with the human ACE2 (hACE2) receptor. While the two coronaviruses share a common receptor and architecture of S, they exhibit differences in interactions with hACE2 as well as differences in proteolytic processing of S that trigger the fusion machine. Understanding how those differences impact S activation is key to understand its function and viral pathogenesis. Here, we investigate hACE2-induced activation in SARS-CoV and SARS-CoV-2 S using hydrogen/deuterium-exchange mass spectrometry (HDX-MS). HDX-MS revealed differences in dynamics in unbound S, including open/closed conformational switching and D614G-induced S stability. Upon hACE2 binding, notable differences in transduction of allosteric changes were observed extending from the receptor binding domain to regions proximal to proteolytic cleavage sites and the fusion peptide. Furthermore, we report that dimeric hACE2, the native oligomeric form of the receptor, does not lead to any more pronounced structural effect in S compared to saturated monomeric hACE2 binding. These experiments provide mechanistic insights into receptor-induced activation of Sarbecovirus spike proteins.


Subject(s)
COVID-19 , Severe acute respiratory syndrome-related coronavirus , Humans , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Allosteric Regulation , Receptors, Virus/metabolism , Spike Glycoprotein, Coronavirus/chemistry
14.
Circ Res ; 132(10): 1320-1337, 2023 05 12.
Article in English | MEDLINE | ID: covidwho-2313536

ABSTRACT

The current epidemic of corona virus disease (COVID-19) has resulted in an immense health burden that became the third leading cause of death and potentially contributed to a decline in life expectancy in the United States. The severe acute respiratory syndrome-related coronavirus-2 binds to the surface-bound peptidase angiotensin-converting enzyme 2 (ACE2, EC 3.4.17.23) leading to tissue infection and viral replication. ACE2 is an important enzymatic component of the renin-angiotensin system (RAS) expressed in the lung and other organs. The peptidase regulates the levels of the peptide hormones Ang II and Ang-(1-7), which have distinct and opposing actions to one another, as well as other cardiovascular peptides. A potential consequence of severe acute respiratory syndrome-related coronavirus-2 infection is reduced ACE2 activity by internalization of the viral-ACE2 complex and subsequent activation of the RAS (higher ratio of Ang II:Ang-[1-7]) that may exacerbate the acute inflammatory events in COVID-19 patients and possibly contribute to the effects of long COVID-19. Moreover, COVID-19 patients present with an array of autoantibodies to various components of the RAS including the peptide Ang II, the enzyme ACE2, and the AT1 AT2 and Mas receptors. Greater disease severity is also evident in male COVID-19 patients, which may reflect underlying sex differences in the regulation of the 2 distinct functional arms of the RAS. The current review provides a critical evaluation of the evidence for an activated RAS in COVID-19 subjects and whether this system contributes to the greater severity of severe acute respiratory syndrome-related coronavirus-2 infection in males as compared with females.


Subject(s)
COVID-19 , Renin-Angiotensin System , Humans , Male , Female , Renin-Angiotensin System/physiology , Angiotensin-Converting Enzyme 2/metabolism , Peptidyl-Dipeptidase A/physiology , SARS-CoV-2 , Sex Characteristics , Post-Acute COVID-19 Syndrome , Angiotensin-Converting Enzyme Inhibitors/pharmacology
15.
Int J Mol Sci ; 24(9)2023 May 05.
Article in English | MEDLINE | ID: covidwho-2312704

ABSTRACT

The binding properties of synthetic and recombinant peptides derived from N-terminal part of ACE2, the main receptor for SARS-CoV-2, were evaluated. Additionally, the ability of these peptides to prevent virus entry in vitro was addressed using both pseudovirus particles decorated with the S protein, as well as through infection of Vero cells with live SARS-CoV-2 virus. Surprisingly, in spite of effective binding to S protein, all linear peptides of various lengths failed to neutralize the viral infection in vitro. However, the P1st peptide that was chemically "stapled" in order to stabilize its alpha-helical structure was able to interfere with virus entry into ACE2-expressing cells. Interestingly, this peptide also neutralized pseudovirus particles decorated with S protein derived from the Omicron BA.1 virus, in spite of variations in key amino acid residues contacting ACE2.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Chlorocebus aethiops , Humans , SARS-CoV-2/metabolism , Vero Cells , Angiotensin-Converting Enzyme 2/metabolism , Protein Binding , Peptides/pharmacology , Peptides/metabolism
16.
Molecules ; 28(9)2023 May 05.
Article in English | MEDLINE | ID: covidwho-2319377

ABSTRACT

Over the last few years, the study of the SARS-CoV-2 spike protein and its mutations has become essential in understanding how it interacts with human host receptors. Since the crystallized structure of the spike protein bound to the angiotensin-converting enzyme 2 (ACE2) receptor was released (PDB code 6M0J), in silico studies have been performed to understand the interactions between these two proteins. Specifically, in this study, heterocyclic compounds with different chemical characteristics were examined to highlight the possibility of interaction with the spike protein and the disruption of the interaction between ACE2 and the spike protein. Our results showed that these compounds interacted with the spike protein and interposed in the interaction zone with ACE2. Although further studies are needed, this work points to these heterocyclic push-pull compounds as possible agents capable of interacting with the spike protein, with the potential for the inhibition of spike protein-ACE2 binding.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Protein Binding
17.
J Biol Chem ; 299(6): 104820, 2023 06.
Article in English | MEDLINE | ID: covidwho-2316300

ABSTRACT

Patients with cystic fibrosis (CF) have decreased severity of severe acute respiratory syndrome-like coronavirus-2 (SARS-CoV-2) infections, but the underlying cause is unknown. Patients with CF have high levels of neutrophil elastase (NE) in the airway. We examined whether respiratory epithelial angiotensin-converting enzyme 2 (ACE-2), the receptor for the SARS-CoV-2 spike protein, is a proteolytic target of NE. Soluble ACE-2 levels were quantified by ELISA in airway secretions and serum from patients with and without CF, the association between soluble ACE-2 and NE activity levels was evaluated in CF sputum. We determined that NE activity was directly correlated with increased ACE-2 in CF sputum. Additionally, primary human bronchial epithelial (HBE) cells, exposed to NE or control vehicle, were evaluated by Western analysis for the release of cleaved ACE-2 ectodomain fragment into conditioned media, flow cytometry for the loss of cell surface ACE-2, its impact on SARS-CoV-2 spike protein binding. We found that NE treatment released ACE-2 ectodomain fragment from HBE and decreased spike protein binding to HBE. Furthermore, we performed NE treatment of recombinant ACE-2-Fc-tagged protein in vitro to assess whether NE was sufficient to cleave recombinant ACE-2-Fc protein. Proteomic analysis identified specific NE cleavage sites in the ACE-2 ectodomain that would result in loss of the putative N-terminal spike-binding domain. Collectively, data support that NE plays a disruptive role in SARS-CoV-2 infection by catalyzing ACE-2 ectodomain shedding from the airway epithelia. This mechanism may reduce SARS-CoV-2 virus binding to respiratory epithelial cells and decrease the severity of COVID19 infection.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Cystic Fibrosis , Leukocyte Elastase , Humans , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Cystic Fibrosis/metabolism , Leukocyte Elastase/metabolism , Protein Binding , Proteomics , Respiratory Mucosa/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
18.
Int J Mol Sci ; 24(9)2023 May 08.
Article in English | MEDLINE | ID: covidwho-2315986

ABSTRACT

This study is an extension of current research into a novel class of synthetic antihypertensive drugs referred to as "bisartans", which are bis-alkylated imidazole derivatives bearing two symmetric anionic biphenyltetrazoles. Research to date indicates that bisartans are superior to commercially available hypertension drugs, since the former undergo stronger docking to angiotensin-converting enzyme 2 (ACE2). ACE2 is the key receptor involved in SARS-CoV-2 entry, thus initiating COVID-19 infection and in regulating levels of vasoactive peptides such as angiotensin II and beneficial heptapeptides A(1-7) and Alamandine in the renin-angiotensin system (RAS). In previous studies using in vivo rabbit-iliac arterial models, we showed that Na+ or K+ salts of selected Bisartans initiate a potent dose-response inhibition of vasoconstriction. Furthermore, computational studies revealed that bisartans undergo stable binding to the vital interfacial region between ACE2 and the SARS-CoV-2 "receptor binding domain" (i.e., the viral RBD). Thus, bisartan homologs are expected to interfere with SARS-CoV-2 infection and/or suppress disease expression in humans. The primary goal of this study was to investigate the role of tetrazole in binding and the network of amino acids of SARS-CoV-2 Spike RBD-ACE2 complex involved in interactions with sartans. This study would, furthermore, allow the expansion of the synthetic space to create a diverse suite of new bisartans in conjunction with detailed computational and in vitro antiviral studies. A critical role for tetrazole was uncovered in this study, shedding light on the vital importance of this group in the binding of sartans and bisartans to the ACE2/Spike complex. The in silico data predicting an interaction of tetrazole-containing sartans with ACE2 were experimentally validated by the results of surface plasmon resonance (SPR) analyses performed with a recombinant human ACE2 protein.


Subject(s)
COVID-19 , Animals , Humans , Rabbits , SARS-CoV-2/metabolism , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Antihypertensive Agents/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin II Type 1 Receptor Blockers , Binding Sites , Protein Binding
19.
Cell Commun Signal ; 21(1): 110, 2023 05 15.
Article in English | MEDLINE | ID: covidwho-2315856

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by a new member of the Coronaviridae family known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are structural and non-structural proteins (NSPs) in the genome of this virus. S, M, H, and E proteins are structural proteins, and NSPs include accessory and replicase proteins. The structural and NSP components of SARS-CoV-2 play an important role in its infectivity, and some of them may be important in the pathogenesis of chronic diseases, including cancer, coagulation disorders, neurodegenerative disorders, and cardiovascular diseases. The SARS-CoV-2 proteins interact with targets such as angiotensin-converting enzyme 2 (ACE2) receptor. In addition, SARS-CoV-2 can stimulate pathological intracellular signaling pathways by triggering transcription factor hypoxia-inducible factor-1 (HIF-1), neuropilin-1 (NRP-1), CD147, and Eph receptors, which play important roles in the progression of neurodegenerative diseases like Alzheimer's disease, epilepsy, and multiple sclerosis, and multiple cancers such as glioblastoma, lung malignancies, and leukemias. Several compounds such as polyphenols, doxazosin, baricitinib, and ruxolitinib could inhibit these interactions. It has been demonstrated that the SARS-CoV-2 spike protein has a stronger affinity for human ACE2 than the spike protein of SARS-CoV, leading the current study to hypothesize that the newly produced variant Omicron receptor-binding domain (RBD) binds to human ACE2 more strongly than the primary strain. SARS and Middle East respiratory syndrome (MERS) viruses against structural and NSPs have become resistant to previous vaccines. Therefore, the review of recent studies and the performance of current vaccines and their effects on COVID-19 and related diseases has become a vital need to deal with the current conditions. This review examines the potential role of these SARS-CoV-2 proteins in the initiation of chronic diseases, and it is anticipated that these proteins could serve as components of an effective vaccine or treatment for COVID-19 and related diseases. Video Abstract.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/metabolism , COVID-19 Drug Treatment , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/metabolism , Protein Binding
20.
Cell Mol Life Sci ; 80(6): 140, 2023 May 07.
Article in English | MEDLINE | ID: covidwho-2315322

ABSTRACT

The COVID-19 pandemic spread around the world is due to the enormous capacity of the SARS-CoV-2 coronavirus to be transmitted between humans, causing a threat to global public health. It has been shown that the entry of this virus into cells is highly facilitated by the presence of angiotensin-converting enzyme 2 (ACE2) in the cell membrane. Currently, we have no precise knowledge of how this receptor expresses in the brain of human fetus and, as a consequence, we do not know how susceptible the neural cells in the developing brain are to being infected through the vertical transmission of this virus, from mother to fetus. In this work, we describe the expression of ACE2 in the human brain at 20 weeks of gestation. This stage corresponds to the period of neuronal generation, migration, and differentiation in the cerebral cortex. We describe the specific expression of ACE2 in neuronal precursors and migratory neuroblasts of the dentate gyrus in the hippocampus. This finding implies that SARS-CoV-2 infection during the fetal period may affect neuronal progenitor cells and alter the normal development of the brain region where memory engrams are generated. Thus, although vertical transmission of SARS-CoV-2 infection was reported in few cases, the massive infection rate of young people in terms of the new variants leads to the possibility of increasing the ratio of congenital infections and originating cognitive alterations, as well as neuronal circuit anomalies that may represent vulnerability to mental problems throughout life.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Adolescent , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Pandemics , Peptidyl-Dipeptidase A , Hippocampus/metabolism , Dentate Gyrus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL